Codes and Standards: Hydrogen Fuel Purity Specifications

Walter F. Podolski Fuel Purity Workshop Los Angeles, CA April 26, 2004

FreedomCAR and Fuel Partnership Organizational Structure

Codes and Standards for Commercial Hydrogen/Fuel Cell Vehicles

Goal is to support commercialization decision in the 2015 timeframe

- Ensure acceptability to all stake-holders
 - Regulators, insurers, public
- Enable commercial feasibility
- Facilitate rapid introduction of technical advances

Issues

- What we want to avoid
 - Premature Standards, Codes, and Regulations that slow introduction of new technologies
 - Competing national and international SDOs and professional organizations
- What we want to encourage
 - Flexible guidelines that enable demonstration
 & validation projects
 - Consistent Standards that enable global introduction of fuel cell vehicles

Potential Rollout of Standards

Time

Guidelines & Best Practices

Rapid technology advances & demo experiences

Industry Standards

Validation & experience

Rule Making

FMVSS & UN GTR

Regulations

Commercial feasibility

Plan of action

- Develop R&D roadmap to produce required information and experience for robust standards
 - expert input from all stakeholders
 - transparent methodology
 - publicly accessible
- Support technology development efforts
- Develop template for implementation of codes/regulations and standards in the US
- Support the development of training/educational materials
- Actively encourage coordination of international initiatives with the R&D roadmap

FreedomCAR Approach

Tech Teams will provide input to hydrogen purity specification: Fuel Cell Systems, Hydrogen Storage, Hydrogen Production, Hydrogen Delivery, Hydrogen Fuel/Vehicle Pathway Integration, and Codes and Standards

- interaction between fuel cell and hydrogen storage system characteristics as well as production and delivery attributes and options
- trade-offs between cost and feasibility of production/delivery options and fuel cell/storage system performance, durability

Fuel Cell Tech Team Status

- Initial specification for hydrogen from the storage system to the fuel cell inlet
 - 10 ppb S, 1 ppm CO, 100 ppm CO₂, 1 ppm NH₃, 100 ppm NMHC on C-1 basis, <2% O₂, N₂, Ar, particulates conform to ISO 14687
- Revisions under consideration based on durability data and experience in fuel cell vehicle validation projects

Hydrogen Storage Tech Team

- Output from storage system conforms to inlet specification from Fuel Cell Tech Team
- Storage system may add hydrogen purity requirements at the vehicle/fueling interface

Hydrogen Storage Tech Team Status

- Current research focus on new/ improved materials for storing H₂
 - Metal hydrides [e.g. alanates (Ti-doped NaAl₄)]
 - Carbon-based adsorbents (e.g. Nanotubes)
 - Chemical hydrides (e.g. NaBH₄, MgH₂)
- Researchers considering required hydrogen purity into storage material as well as possible impurities out of the storage system that impact fuel cell performance
- Matrix of impurities and effects is being developed